a2 United States Patent

Pean et al.

US009317462B2

(10) Patent No.: US 9,317,462 B2
(45) Date of Patent: *Apr. 19, 2016

(54) MICROCONTROLLER PERIPHERAL DATA
TRANSFER REDIRECTION FOR RESOURCE
SHARING

(71) Applicant: Atmel Corporation, San Jose, CA (US)

(72) Inventors: Guillaume Pean, Aix-en-Provence (FR);
Franck Lunadier, Trets (FR); Alain
Vergnes, Trets (FR)

(73) Assignee: Atmel Corporation, San Jose, CA (US)

(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by O days.

This patent is subject to a terminal dis-
claimer.

(21) Appl. No.: 14/659,074
(22) Filed: Mar. 16, 2015

(65) Prior Publication Data
US 2015/0186314 Al Jul. 2, 2015

Related U.S. Application Data

(63) Continuation of application No. 13/309,741, filed on
Dec. 2, 2011, now Pat. No. 8,984,195.

(2013.01); GOGF 13/28 (2013.01); GOGF
1374022 (2013.01); HO4L 9/0631 (2013.01)
(58) Field of Classification Search
USPC oo 710/104, 119, 305, 311
See application file for complete search history.

(56) References Cited
U.S. PATENT DOCUMENTS

6,665,755 B2* 12/2003 Modelski etal. 710/100
6,668,287 B1* 12/2003 Boyleetal.cccocenennn 710/22
(Continued)
OTHER PUBLICATIONS

Non-Final Office Action dated Dec. 2, 2011, U.S. Appl. No.
13/309,741 (7 pages).
(Continued)

Primary Examiner — Raymond Phan
(74) Attorney, Agent, or Firm — Fish & Richardson P.C.

(57) ABSTRACT

A system includes one or more master modules configured to
execute instructions embedded in non-transitory machine-
readable media and controllable by a processor. The system
also includes one or more peripheral modules that are con-
figured to execute instructions embedded in non-transitory
machine-readable media and controllable by the processor.
The system also includes a system bus with instructions

(51) Int.CL embedded in a non-transitory machine-readable medium and
GOGF 13/00 (2006.01) configured to allow data transfer between the processor and
GO6F 13/364 (2006.01) the one or more peripheral modules. A data processing mod-
GOGF 13/28 (2006.01) ule of the one or more peripheral modules includes a master
GOGF 13/40 (2006.01) interface and a slave interface. Both master and slave inter-
Ho4L 9/06 (2006.01) faces are coupled to the system bus.

(52) US.CL
CPCcccee. GO6F 13/364 (2013.01); GO6F 13/00 25 Claims, 5 Drawing Sheets

200
N
201 ~ 202\ . 203
Microprocessor DMA LCD
Core Controller Controller
204~
261 SYSTEM BUS MATRIX
221 262 263 264
222 - .- = 208
Data
223\ - - m Processing
224~
225 226~ 227~ 208~ %67
205 \ 206 ~N /207
On-Chip Interrupt
Memory Controller Memory Controller

US 9,317,462 B2

Page 2
(56) References Cited 2006/0031614 Al* 2/2006 Takabaccccocovnrnnnnee 710/110
2006/0179192 Al* 8/2006 Ganasanetal. 710/110
U.S. PATENT DOCUMENTS OTHER PUBLICATIONS
6,741,253 B2* 5/2004 Radkeetal. 345/531 . .
6.934.780 B2* /2005 Modelski ef al. 510/100 Final Office Action dated Jul. 17,2014, U.S. Appl. No. 13/309,741 (6
6,981,077 B2* 12/2005 Modelski et al. 710/100 page.:s).
6,981,088 B2* 12/2005 Holmetal. 710/306 Notice of Allowance dated Nov. 7, 2014, U.S. Appl. No. 13/309,741
7,159,048 B2* 1/2007 Roachetal. . .. 710/22 (5 pages).
8,984,195 B2* 3/2015 Vergnesetal. . 710/110
2002/0120798 Al* 8/2002 Modelskietal. 710/107 * cited by examiner

U.S. Patent Apr. 19,2016 Sheet 1 of 5 US 9,317,462 B2

A A
152 153
0 =
101 102 103
N ™ [
Microprocessor DMA LCD
Core Controller Controller

162
/6

Memory On-Chip Interrupt Data
Controller Memory Controller Processing

154 155
FIG. 1

U.S. Patent Apr. 19,2016 Sheet 2 of 5 US 9,317,462 B2

200
\
201 ~ 202\ ‘ ‘ /203
Microprocessor DMA LCD

Core Controller Controller

/208

Data
Processing

On-Chip Interrupt
Memory Controller

Memory Controller

b

FIG. 2

U.S. Patent Apr. 19,2016 Sheet 3 of 5 US 9,317,462 B2

300

DMA Module 312

Master Interface 310

I

Internal Buffer 314

I

Data Processing Core 330

1

Internal Buffer 324

|

Slave Interface 320

FIG. 3

U.S. Patent Apr. 19,2016 Sheet 4 of 5 US 9,317,462 B2

“

402
1 Receive Data Transfer Instruction

4061

Perform Standard Data)

404

Additional

Processing? Transfer Operation

4081 Set Extra Address Bit in System
Bus

v

410
1 Listen on System Bus .

412

xtra Address
Bit Set?

4141 Perform Data Transfer with Extra
Address Bit Unset

v

416
_L Process the Data

v

#1872 [Place Processed Data on
System Bus

v

420
1 Receive Processed Data

End FlG 4

U.S. Patent Apr. 19,2016 Sheet 5 of 5 US 9,317,462 B2

"

502
1 Receive Data Transfer Instruction

506 1

Perform Standard Data)

504

Additional

Processing? Transfer Operation

5081 Set Extra Address Bit in System
Bus

v

510
1 Listen on System Bus aam

512

xtra Address
Bit Set?

5141 Store Data to Write in Internal
Buffer

v

516
_L Process the Data

v

5181 Perform Data Transfer with Extra
Address Bit Unset

v

520
1 Receive Processed Data

End FIG. 5

US 9,317,462 B2

1
MICROCONTROLLER PERIPHERAL DATA
TRANSFER REDIRECTION FOR RESOURCE
SHARING

CROSS-REFERENCE TO RELATED
APPLICATIONS

This application is a continuation of U.S. application Ser.
No. 13/309,741, filed Dec. 2,201 1. The disclosure of the prior
application is considered part of (and is incorporated by ref-
erence in) the disclosure of this application.

TECHNICAL FIELD

This disclosure relates generally to resource sharing in
microcontrollers.

BACKGROUND

Microcontroller architectures sometimes include periph-
eral modules for pre-processing and/or post-processing of
data before the standard data processing. For example, a
microcontroller may include an encryption/decryption
peripheral module for processing encrypted frame data
before the data is processed by a master display controller that
handles decrypted data. Unless the master and peripheral
modules are coupled together, the additional processing by
the peripheral modules may introduce latency and reduce the
overall bandwidth of the processing. It may be useful to
configure a microcontroller architecture for additional links
for direct data transfer between master and peripheral mod-
ules. Such a microcontroller architecture may allow resource
sharing between modules and also may cause microcontroller
size optimization.

SUMMARY

In a general aspect, a system includes one or more master
modules configured to execute instructions embedded in non-
transitory machine-readable media and controllable by a pro-
cessor. The system also includes one or more peripheral mod-
ules that are configured to execute instructions embedded in
non-transitory machine-readable media and controllable by
the processor. The system also includes a system bus with
instructions embedded in a non-transitory machine-readable
medium and configured to allow data transfer between the
one or more master modules and the one or more peripheral
modules. A data processing module of the one or more
peripheral modules includes a master interface and a slave
interface. Both master and slave interfaces are coupled to the
system bus.

Particular implementations may include one or more of the
following features. The instructions included in the system
bus may be operable to cause the system bus to redirect a data
transfer to the data processing module. The instructions may
be included in a user software interface of the system bus. The
redirect may be based on decoding an input pin associated
with the data processing module. The redirect may be based
on decoding a transfer address. The redirect may be based on
decoding which of the one or more peripheral modules is a
destination for the data transfer. The redirect may be based on
a determination of which master module initiated the data
transfer.

The system may include a microcontroller circuit. The data
processing module includes instructions for performing
encryption and decryption operations. The encryption and

10

15

20

25

30

35

40

45

50

55

60

65

2

decryption operations may include instructions for executing
Advanced Encryption Standard (AES) algorithm.

In another general aspect, a method for resource sharing in
a microcontroller circuit is implemented by receiving an
instruction on a system bus from a master module for a
transfer of data to a destination. It is determined whether
additional processing is associated with the transfer. Based on
determining that additional processing is associated with the
transfer, the transfer is redirected to a data processing module
by setting an extra address bit in the system bus.

Particular implementations may include one or more of the
following features. A data processing module may determine
whether that the extra address bit is set in the system bus.
Based on determining that the extra address bit is set, the extra
address bit may be cleared and a read transfer for the data may
be performed. The data processing module may perform
additional processing on the data and place the additionally
processed data on the system bus. The additionally processed
data may be received by the destination.

The data processing module may include a peripheral mod-
ule including a master interface and a slave interface. The data
processing module may be configured to listen on the system
bus for transfer instructions. One or more additional periph-
eral modules may be configured to ignore a transfer when the
extra address bit is set.

The extra address bit may be set in the system bus based on
determining which master module of one or more master
modules initiated the transfer. The extra address bit may be set
in the system bus based on determining which peripheral
module of one or more peripheral modules is a destination for
the transfer.

The transfer may include at least one of a read transfer and
a write transfer. The destination may include at least one of a
master module and a peripheral module.

Performing additional processing on the data may include
performing at least one of encryption and decryption opera-
tions on the data. The encryption and decryption operations
may include performing instructions for executing Advanced
Encryption Standard (AES) algorithm.

The details of one or more disclosed implementations are
set forth in the accompanying drawings and the description
below. Other features, aspects, and advantages will become
apparent from the description, the drawings and the claims.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 11is a conceptual block diagram of an example system
for standard data processing.

FIG. 2 is a conceptual block diagram of an example system
for data processing using master and slave interfaces in the
data processing module.

FIG. 3 is a conceptual block diagram of an example system
for a data processing module including both master and slave
interfaces.

FIG. 4 is a flow diagram of an exemplary process for data
processing in a read transfer using a data processing module
with both master and slave interfaces.

FIG. 5 is a flow diagram of an exemplary process for data
processing in a write transfer using a data processing module
with both master and slave interfaces.

DETAILED DESCRIPTION

FIG. 11is a conceptual block diagram of an example system
100 for standard data processing. The example system 100
may be a microcontroller architecture that includes a micro-
processor core 101, a DMA controller 102, a LCD controller

US 9,317,462 B2

3

103, a memory controller 105, an on-chip memory 106, an
interrupt controller 107, a data processing module 108 and a
system bus matrix 104. The microcontroller architecture also
includes terminal pads 152, 153, 154 and 155. System bus
matrix 104 includes system bus 121, 122 and 123 that are
coupled to the controllers at connectors 161, 162, 163, 164,
165, 166 and 167.

The microprocessor core 101, the DMA controller 102 and
the LCD controller 103 are configured to be master modules
(referred to interchangeably as “master controllers” or simply
as “controllers”). The memory controller 105 the on-chip
memory 106 and the interrupt controller 107 are peripheral
modules (referred to interchangeably as “slave modules” or
simply as “slaves”) controlled by the master modules.

The microprocessor core 101 may be any appropriate
microprocessor core. For example, the microprocessor core
101 may be an ARM-based core or a digital signal processor
(DSP) core. The microprocessor core 101 is configured to run
user software loaded into memories that can be located on-
chip, e.g., on-chip memory 106, or off-chip and driven by the
memory controller 105.

The microprocessor core 101 communicates with external
devices via the Direct Memory Access (DMA) controller 102
and the Liquid Crystal Display (LCD) controller 103. For
example, the microprocessor core 101 controls a LCD display
via the LCD controller 103 and may read/write data from an
external memory device (e.g., an off-chip flash memory
device, a frame buffer, a hard drive, a memory mapped port,
etc.) via the DMA controller 102. The LCD controller 103
reads LCD image data from off-chip memory devices using
the memory controller 105, and the DMA controller 102 may
read large blocks of data from external memory devices using
the memory controller 105.

The system bus matrix 104 can connect the microprocessor
core 101, the DMA controller 102, the LCD controller 103
and the memory controller 105. For example, the system bus
matrix 104 can include MC_bus 121 that connects the micro-
processor core 101 to the memory controller 105, on-chip
memory 106, interrupt controller 107 and data processing
module 108 via connection points 161, 162, 163 and 164
respectively; DMA_bus 122 that connects the DMA control-
ler 102 to the memory controller 105, on-chip memory 106
and the data processing module 108; and the LCD_bus 123
that connects the LCD controller 103 to the memory control-
ler 105 and the data processing module 108.

The connection points 161,162,163 and 164 together rep-
resent a read data multiplexer (not shown) on the MC_bus
121. The connection points 164,165 and 166 together repre-
sent a write data multiplexer that are used by the bus 121,122
and 123 to write to the data processing module 108.

Each bus, e.g., MC_bus 121, includes a read data bus, a
write data bus, an address bus and several control signals (not
shown). The read data bus of MC_bus 121 is driven by a
multiplexer (not shown) that collects the data from the slave
modules 105 to 108. The selector input of the multiplexer is
driven by a set of signals whose value results from address bus
decoding and arbitration of different requests to access a slave
module. The write data bus of MC_bus 121 is driven by
different slave modules 105 to 108. The microprocessor 101
may be able to access all slave modules using MC_bus 121,
but this may not be the case for all master modules. For
example, the DMA controller 102 may not use the interrupt
controller module 107 and therefore the write data bus of
DMA _bus 122 is routed to slave module 105,106 and 108.
The LCD controller 103 processes large frame buffers stored
in external memory devices, and may not use the on-chip
memory 106 or the interrupt controller module 107. The write

10

15

20

25

30

35

40

45

50

55

60

65

4

data bus of LCD_bus 123 is routed to data processing module
108 and memory controller 105 through connection points
166 and 167 respectively, but there is no connection to on-
chip memory module 106 or interrupt controller 107, as indi-
cated by the lack of associated connection points on the
LCD_bus 123.

Several master controllers can access a same slave module
using multiplexed write data bus. For example, the on-chip
memory 106 can be accessed by microprocessor core 101 and
DMA controller 102. Therefore, the write data bus of
MC_bus 121 is multiplexed with write data bus of DMA_bus
122 to drive the on-chip memory 106.

Each bus in the system bus matrix 104 and/or in the system
100 may be thirty-two bits wide. For example, MC_bus 121,
DMA_bus 122 and LCD_bus 123 may be thirty-two bits
wide. Although the buses may be thirty-two bits wide,
memory accesses are not limited to thirty-bit memory
accesses. For example, assuming the external memory device
is thirty-two bit memory (e.g., a word sized memory), the
microprocessor core 101 may issue byte (eight bit) read/write
operations, half word (sixteen bit) read/write operations and
word (thirty-two) bit read/write operations.

Some of the master modules are configured for interacting
with external devices. For example, as described previously,
the LCD controller 103 and the memory controller 105 are
configured as interface modules for interfacing with external
devices such as LCD displays and off-chip memories. The
interface modules include terminal pads 152,153,154, 155 to
drive (or to be driven) by external components, e.g., LCD
displays and off-chip memory devices.

In one implementation, the DMA Controller 102 is config-
ured to perform repetitive data processing tasks such as trans-
ferring large chunks of data from/to external memory devices.
For example, for transferring an LCD data image located inan
external memory device to an LCD display, the DMA con-
troller 102 initiates a read access to the memory controller
105 to get first data of the frame buffer and stores the first data
into in a first-in-first-out (FIFO) buffer. Once the first data is
stored in the FIFO buffer, then a write access can be per-
formed by the LCD controller 103 to process the data for
display on the LCD display. After transferring the first data as
above, a second data of the frame buffer will be transferred in
a similar manner.

Utilizing a DMA controller 102 to perform such a data
transfer from an external memory device to a LCD display
may be improved by integrating a dedicated DMA module
within the LCD controller 103. Such a configuration may
reduce resource consumption of the system bus 104 because
one transfer (read access from the L.CD controller to the
external memory device) can perform the operation. A write
access from the LCD controller 103 to the system bus 104
may be avoided. In contrast, a standalone DMA controller
102 performs a read access followed by a write access both
using system bus bandwidth.

While the data transfer is in progress, a software applica-
tion code executed by microprocessor core 101 or the DMA
controller 102 may have to access the memory controller 105,
e.g., because the software application code is loaded into an
external memory device, or DM A data buffers of the different
channels are stored in the external memory device. Concur-
rent access to the memory controller 105 may be possible
using multiple ports on the memory controller 105. The over-
all bandwidth from/to the memory controller 105 is constant,
and the master modules performing concurrent access share
the overall constant bandwidth, thereby resulting in less
bandwidth for each master module. Consequently, less band-

US 9,317,462 B2

5

width may be available for correctly displaying an image or
limiting the size of the image for correct display (e.g., for no
display artifact).

The above configuration of using dedicated DMA modules
within master controller modules may be useful when the
DMA controller 102 is simultaneously managing several
transfers (several DMA channels are used at a time). How-
ever, for some types of data transfer that use additional pro-
cessing, such a configuration may increase the number of
accesses to the memory controller 105 and therefore consume
the overall bandwidth.

For example, a LCD frame buffer transfer where the data is
stored in encrypted form in an external memory device may
involve decryption of the data before being displayed on a
LCD display using the LCD controller 103. The additional
processing may be performed using the data processing mod-
ule 108. A first channel of the DMA controller 102 is utilized
to first read encrypted frame buffer from the off-chip memory
using memory controller 105 and feeding the encrypted
frame buffer to the data processing module 108. The data
processing module 108 performs decryption operation on the
data that is fed to the data processing module 108. A second
DMA channel sends back the decrypted data (clear frame
buffer) to the memory controller 105. Subsequently the
embedded DMA of the LCD controller 103 transfers the clear
frame buffer to the LCD controller 103.

Without encryption, the data transfer uses repetitive read
accesses and consumes a bandwidth of a “basic transfer”.
However, with the additional processing for decryption, the
first channel of the DMA controller 102 consumes 2 times the
“basic transfer” bandwidth—1 “basic transfer” bandwidth for
the read transfer from memory controller 105 to internal
FIFO buffer of DMA controller 102 (not shown) and 1 “basic
transfer” bandwidth from the internal FIFO of the DMA
controller 102 to the data processing module 108. The second
channel of DMA controller 102 transfers the decrypted data
back to the memory controller 105 and consumes an addi-
tional 2 times the “basic transfer” bandwidth. Subsequently,
the clear frame buffer is transferred by the LCD controller 103
consuming a bandwidth equivalent to a “basic transfer”.
Therefore, the overall operation consumes 5 times the band-
width of a “basic transfer”.

The resource consumption due to the additional processing
may be improved by modifying the data processing module
108 to include a master module that initiates the transfer by
means of an embedded DMA module within the master mod-
ule. With such a configuration, one read channel is connected
to the data processing module 108 slave interface. The data
processing module 108 will use the embedded DMA module
to get the data out of the memory by performing a read
transfer from memory controller 105, transforms the
encrypted frame buffer into a clear frame buffer and put the
clear frame buffer on the slave interface to end the DMA
controller read transfer. The first channel costs one “basic
transfer” time. Then a second DMA controller 102 channel is
used to write the processed data (stored in DMA controller
102 internal buffer) to the memory to store the clear frame
buffer in memory. The second channel costs one “basic trans-
fer” time. Therefore, the bandwidth used to generated the
clear frame buffer is equivalent to 2 times the “basic transfer”
bandwidth. Subsequently, the clear frame buffer is transferred
by the LCD controller 103 consuming a bandwidth equivalent
to a “basic transfer”, as described previously. Therefore,
using the embedded DMA module in the data processing
module 108, the overall operation consumes a bandwidth of 3
times the basic transfer.

10

15

20

25

30

35

40

45

50

55

60

65

6

FIG. 2 is a conceptual block diagram of an example system
200 for data processing using master and slave interfaces in
the data processing module. The example system 200 may be
a microcontroller architecture that includes a microprocessor
core 201, a DMA controller 202, a LCD controller 203, a
memory controller 205, an on-chip memory 206, an interrupt
controller 207, a data processing module 208 and a system
bus matrix 204. System bus matrix 204 includes system bus
221,222, 223,224,225,226, 227 and 228 that are coupled to
the controllers at connection points 261, 262, 263, 264, 265,
266 and 267.

The microprocessor core 201, the DMA controller 202 and
the LCD controller 203 are configured to be master control-
lers that are similar to the microprocessor core 101, the DMA
controller 102 and the LCD controller 103 respectively. The
memory controller 205, the on-chip memory 206 and the
interrupt controller 207 are slave modules controlled by the
master controllers; the slave modules are similar to the
respective slave modules of system 100. However, the master
and slave modules of microcontroller architecture 200 are
configured for additional processing based on setting an addi-
tional address bit in the system bus 204, as described in the
following sections.

The data processing module 208 includes a master inter-
face and a slave interface. Both master and slave interfaces are
connected to the system bus matrix 204. The data processing
module 208 can catch transfers directly on the system bus to
process the data (the system bus matrix 204 handles the
transfer redirection) and then place the transfer on the system
bus 204 with the processed data.

The system bus matrix 204 connects the microprocessor
core 201, the DMA controller 202, the LCD controller 203
and the master interface of the data processing module 208 to
the memory controller 105, on-chip memory 106, interrupt
controller 107 and slave interface of the data processing mod-
ule 208. For example, the system bus matrix 204 includes
MC_bus 221 that connects the microprocessor core 201 to the
memory controller 205, on-chip memory 206, interrupt con-
troller 207 and slave interface of data processing module 208
via connection points 261, 262, 263 and 264 respectively;
DMA_bus 222 that connects the DMA controller 202 to the
memory controller 205, on-chip memory 206 and the slave
interface of the data processing module 208; the LCD_bus
223 that connects the LCD controller 203 to the memory
controller 205 and the slave interface of the data processing
module 108; and the DP_bus 224 that connects the master
interface of the data processing module 208 to the memory
controller 205, on-chip memory 206 and the slave interface of
the data processing module 208.

System bus 225 provides access to memory controller 205
and is connected to bus 221, 222, 223 and 224. System bus
228 provides direct access to the data processing module 208
and is connected to bus 221, 222, 223 and 224. Each system
bus 225 and 228 include read data bus, write data bus, address
bus and control signals connected to bus 221, 222, 223 and
224.

The system bus matrix 204 includes a mechanism to deter-
mine which data transfer to redirect to the data processing
module 208. The mechanism involves using an extra address
bit in the system bus address to indicate if the transfer is to be
redirected to the data processing module 208. When the extra
address bit is set all slave modules except the data processing
module 208 ignore the transfer.

The extra address bit may be set or unset based on which
master controller initiates the transfer, which slave module is
the destination, and the address or the range of addresses used
for the transfer. If the extra address bit is set, the system bus

US 9,317,462 B2

7

matrix 204 redirects the corresponding transfer to the data
processing module 208 through bus 228 and all other slave
modules ignore the transfer.

In one example implementation, decryption of an
encrypted frame buffer prior to display on a LCD display is
performed using the microcontroller architecture 200. The
LCD display frame buffers are stored in an external memory
device coupled to the memory controller 205. The frame
buffers are encrypted using an encryption algorithm, e.g.,
Advanced Encryption Standard (AES).

The LCD controller 203 initiates a read data transfer on
system bus 223 with the memory controller 205 as destina-
tion. In one implementation, the LCD controller 203 sets the
extra address bit in the system bus to indicate that the data is
to be additionally processed by the data processing module
208. However, in other implementations, the system bus
matrix 204 sets the extra address bit for the read data transfer
to flag the additional processing, thereby redirecting the
transfer to bus 228. Other slave modules ignore the transfer
due to the extra address bit being set.

The data processing module 208 decodes the read data
transfer instruction and, using the master interface of the data
processing module 208, initiates a read data transfer on bus
225 without the extra address bit being set, which instructs the
memory controller 205 to provide the data. The memory
controller 205 provides the requested data on bus 225 and the
data processing module performs the decryption of the data
while bus 228 is held in wait state mode for the time interval
the data is decrypted. When the decryption process com-
pletes, the decrypted data is placed on system bus 228. The
LCD controller bus gets the decrypted data on bus 223 and
processes it. The bandwidth for this read data transfer is
limited to a frame buffer read transfer.

In one example implementation, the data processing mod-
ule 208 is used to perform processing on data during a write
transfer. For example, the LCD controller 203 initiates a write
data transfer on system bus 223 for a clear frame buffer with
memory controller 205 as destination. An external memory
device coupled to the memory controller 205 may store the
frame buffers in encrypted form. The clear frame buffer may
be processed by the data processing module 208 before being
written in encrypted form to the external memory device. In
such an implementation, when the data processing module
208 sees a write transfer with the extra address bit set on its
slave interface, the data processing module 208 stores the
associated data in its internal buffer. For the master controller
that initiated the write transfer, e.g., LCD controller 203, the
transfer ends at this point as the data has been received. Then
the data processing module 208 processes the data (e.g.,
encrypting the clear frame buffer) and uses its master inter-
face to initiate a write transfer without the extra address bit
and with memory controller 205 as destination.

Other master modules like the microprocessor core 201, or
the DMA controller 202, or both, can perform direct access to
the memory controller 205 through bus 225 or the on-chip
memory 206 without additional data processing. Alterna-
tively, the system bus matrix 204 may be configured to redi-
rect the access or part of the access from the microprocessor
core 201, or DMA controller 202, or both, to the data pro-
cessing module 208 by again setting the extra address bit.

When the extra address bit is not set, the data processing
module 208 is accessible on the system bus 204 similar to the
data processing module 108. Consequently, the data process-
ing module 208 can be used in standalone mode by means of
bus 228. In the standalone mode, a master controller con-
nected to the system bus matrix 204 can issue a transfer with
the address of the data processing module 208 as destination,

10

15

20

25

30

35

40

45

50

55

60

65

8

and without the extra address bit being set. The data process-
ing module 208 uses its slave interface to receive the data. In
the case of write transfer, the data processing module 208
processes the data and stores the processed data in its internal
buffer, while for read transfer, the data processing module 208
provides the result stored in its internal buffer. For example,
the microprocessor core 201 may perform a write transfer
with the address of the data processing module 208 as desti-
nation, with the extra address bit not set, in order to provide
data to be processed by the data processing module 208. The
result of the write transfer would be stored in an internal
buffer of the data processing module 208. Then the micro-
processor core 201 may issue a read transfer with the address
of the data processing module 208 as destination, with the
extra address bit not set, to obtain the result stored in the
internal buffer of the data processing module 208.

For the above example implementation, the system bus
matrix 204 may be configured in several different ways. The
system bus matrix 204 may be configured to set the extra
address bit for any transfer initiated by the LCD controller
203. This may be useful, for example, in situations where the
LCD controller 203 uses only encrypted frame buffer. In a
different configuration, the system bus matrix 204 could be
configured to set the extra address bit for any transfer with
memory controller 205 as destination. The may be useful, for
example, in implementations where the external memory
device connected to the memory controller 205 stores
encrypted data.

In another configuration, the system bus matrix 204 could
be configured to implement address-based management of
the extra address bit. The may be useful, for example, in
implementations where the LCD controller 203 use both
encrypted frame buffer and clear frame buffer that are stored
at different addresses in the external memory device con-
nected to memory controller 205. The system bus matrix 204
may be configured to use an address table to determine a
range of addresses for which the transfer should be redirected
to the data processing module 208.

The microcontroller architecture 200 offers the capability
to redirect one transfer while other transfers are not redirected
based on a decision by the system bus 204. The microcon-
troller architecture 200 reduces internal bandwidth require-
ments and offers high flexibility since any transfer can be
redirected to the data processing module 208. In addition,
standard and redirected transfers can be mixed without any
limitation since the internal logic in the system bus matrix 204
will deal with managing the extra address bit on a per transfer
basis. The data processing module 208 remains accessible in
standalone mode when the extra address bit is not set.

The microcontroller architecture 200 reduces the number
of'system bus accesses that are made when pre-processing, or
post-processing, or both, of data are performed for a data
transfer involving a slave module of the microcontroller. By
reducing the number of system bus accesses, the overall band-
width of the processing is improved. The complexity of asso-
ciated software drivers may be less because synchronization
between DMA channels is not needed (only one DMA chan-
nel is used), and less processor interruptions have to be
handled.

When standard data transfers without additional process-
ing co-exist with pre/post-processed data transfers, the micro-
controller architecture 200 provides optimal bandwidth shar-
ing for both types of data transfers. Complex software
interventions, e.g., for synchronizing all processes to main-
tain data coherency and security, are not used. In addition,
when several master modules need pre-processed or post-
processed data transfer, the data processing module 208 can

US 9,317,462 B2

9

be shared between all the master modules, and multiple data
processing modules do not have to be implemented.

FIG. 3 is a conceptual block diagram of an example system
300 for a data processing module including both master and
slave interfaces. The example system 300 may be data pro-
cessing module that includes a master interface 310, a slave
interface 320, DMA module 312, internal buffers 314 and
324, and data processing core 330. The data processing mod-
ule 300 may be, for example, the data processing module 208.
The following describes the example system 300 as being
implemented by the data processing module 208 in the micro-
controller architecture 200. However, the example system
300 may be implemented by other systems or system con-
figurations.

The master interface 310 is connected to a system bus, e.g.,
system bus 224. The master interface 310 uses the embedded
DMA module 312 to perform a read or write data transfer on
the system bus with the destination as the memory controller
module, e.g., memory controller 205, or the on-chip memory,
e.g., on-chip memory 206. In the case of a read transfer, the
master interface 310 caches the data to be pre-processed in the
associated internal buffer 314.

The slave interface 320 is also connected to a system bus,
e.g., system bus 228. In the case of a write transfer with the
extra address bit set, the slave interface 320 caches data to be
post-processed in the associated internal buffer 324. In addi-
tion, the slave interface 320 caches processed data in the
internal buffer 324 for retrieval by a master controller, e.g.,
when in standalone mode, as described previously.

The data processing core 330 is used to process data that is
provided to the data processing core 330 using either internal
buffer 314 or 324. After processing, the data processing core
330 places the processed data in the respective internal buffer
for further handling by the respective interface.

The data processing module 300 uses the slave interface
320 to listen on the system bus for data transfer instructions
that are redirected to the data processing module 300. For
example, the slave interface 320 may check whether the extra
address bit is set for every data transfer that is performed on
the system bus. If the extra address bit is set for a data transfer,
the slave interface 320 accepts the data transfer request. In the
case of a read transfer initiated by a master module, the master
interface 310 uses the embedded DMA module 312 to send a
new data transfer request on the system bus, e.g., system bus
224, without the extra address bit being set, to the destination
indicated in the original read data transfer instruction, e.g.,
memory controller 205. The embedded DMA module 312
receives the data requested by the transfer on the system bus
224 and the master interface 310 places the data in the internal
buffer 314 for processing by the data processing core 330.
Once the data is processed by the data processing core 330
and stored in internal buffer 324, the slave interface 320
places the processed data on the system bus, e.g., system bus
228, and the read transfer initiated by the LCD controller 203
ends (for example, with decrypted data on the bus).

In case of a write transfer (e.g., from a master module to an
external memory device), the slave interface 320 places the
data associated with the write transfer in internal buffer 324
for processing by the data processing core 330. For the master
module that initiated the write transfer, the transfer ends here
(for example, with posted write method). Once the data is
processed by the data processing core 330, the processed data
is placed in the internal buffer 314 and the master interface
310 uses the embedded DMA module 312 to send a new write
data transfer request on the system bus, e.g., system bus 224,
to the destination indicated in the original write data transfer

10

15

20

25

30

35

40

45

50

55

60

65

10

instruction. Consequently, the processed data is sent to its
original destination, e.g., the external memory device.

The data processing module 300 uses the slave interface
320 to perform conventional data processing based on
instructions received from master controllers, e.g., process-
ing core 201. As described previously, a master controller
may perform a read or write data transfer on the memory
controller 205 with the extra address bit not set, and provide
the address of the data processing module 300 as the destina-
tion. In one implementation, the destination address may be
an address for the slave interface 320.

FIG. 4 is a flow diagram of an exemplary process 400 for
data processing in a read transfer using a data processing
module with both master and slave interfaces. The process
400 may be performed by a microcontroller architecture that
includes a processing module with both master and slave
interfaces. For example, the process 400 may be performed
by the microcontroller architecture 200. The following
describes the process 400 as being performed by components
of'the example system 200. However, the process 400 may be
performed by other systems or system configurations.

The process 400 begins when a data transfer instruction is
received in the system bus (402). In one implementation, the
data transfer instruction is a read transfer. For example, the
LCD controller 203 may issue a read memory command
directed to the memory controller 205, to read a frame buffer
that is stored in an external memory device coupled to the
memory controller 205.

Uponreceiving the data transfer instruction, the system bus
determines whether the data needs additional processing
(404). For example, the data that is retrieved based on the
transfer instruction may need pre-processing before being
handled by the master controller that issued the transfer
instruction.

If the system bus determines that the data does not need
additional processing, the system bus performs standard data
transfer operation (406). For example, the frame buffer may
be stored in unencrypted form in the external memory device.
The read memory command is forwarded on the system bus
with the extra address bit not set. The memory controller 205
receives the read memory command since it is the destination
indicated in the command, and performs the data transfer
operation.

On the other hand, if the system bus determines that the
data needs additional processing, the extra address bit is set in
the system bus (408). For example, the LCD controller 203
may be configured to process unencrypted data, while the
frame buffer is stored as encrypted data in the external
memory device. Therefore, the encrypted frame buffer has to
be decrypted before sending to the LCD controller 203. The
system bus 204 may determine that the data needs additional
processing based on the address of the master module, or the
address of the destination memory, or both, as described
previously. In one implementation, the extra address bit may
be set by the master module initiating the data transfer, while
in other implementations, the extra address bit is set by the
system bus.

The data processing module listens on the system bus
(410). For example, the slave interface of the data processing
module 208 listens on the system bus 224 to determine
whether a data transfer instruction is redirected to the data
processing module 208. The slave interface module deter-
mines whether the extra address bit is set for a data transfer
instruction on the system bus (412). If the extra address bit is
not set, then the transfer instruction is not redirected to the
data processing module, the data processing module 208

US 9,317,462 B2

11

ignores the transfer and the slave interface listens on the
system bus for the next transfer instruction (410).

If'the extra address bit is set in the system bus, then the data
transfer instruction is redirected to the data processing mod-
ule. The slave interface of the data processing module accepts
the data transfer instruction upon determining that the extra
address bit is set, while all other slave modules ignore the
transfer instruction due to the extra address bit being set. The
data processing module performs a data transfer on the sys-
tem bus with the extra address bit being unset (414). The data
processing module performs the data transfer through its
master interface and without the extra address bit being set.
The data transfer is for the data indicated in the original
transfer instruction, and the transfer is directed to the desti-
nation in the original transfer instruction. For example, the
master interface of the data processing module 208 issues a
read transfer instruction with the memory controller 205 as
the destination, for an encrypted LCD frame buffer that is
stored in the external memory device. The memory controller
205 accepts the read transfer instruction since the extra
address bit is not set, retrieves the encrypted frame buffer
from the external memory device, and places the data on the
system bus. Consequently, the data processing module 208
receives the encrypted data from the system bus.

The data processing module processes the data (416). For
example, the data processing module 208 places the
encrypted frame buffer in an internal buffer (e.g., internal
buffer 314). The data processing module (e.g., data process-
ing core 330) decrypts the frame buffer and puts the clear
frame buffer in the internal buffer (e.g., internal buffer 324).

The data processing module places the processed data on
the system bus (418). For example, the data processing mod-
ule 208 places the clear frame buffer on the system bus 228.
Consequently, the destination receives the processed data
(420). For example, the master controller (e.g., LCD control-
ler 203), obtains the clear frame buffer from the system bus
228 and displays the frame buffer on the external LCD dis-
play. Thus, in one implementation, the microcontroller archi-
tecture 200 can implement the process 400 to perform data
processing for a read transfer instruction using a data process-
ing module with both master and slave interfaces.

FIG. 5 is a flow diagram of an exemplary process 500 for
data processing in a write transfer using a data processing
module with both master and slave interfaces. The process
500 may be performed by a microcontroller architecture that
includes a processing module with both master and slave
interfaces. For example, the process 500 may be performed
by the microcontroller architecture 200. The following
describes the process 500 as being performed by components
of'the example system 200. However, the process 500 may be
performed by other systems or system configurations.

The process 500 begins when a data transfer instruction is
received in the system bus (502). For example, the LCD
controller 203 may issue a write memory command directed
to the memory controller 205, to write a frame buffer to an
external memory device coupled to the memory controller
205.

Upon receiving the data transfer instruction, the system bus
determines whether the data needs additional processing
(504). The data for the transfer instruction may need post-
processing before being handled by the destination module.
For example, in one implementation, the LCD controller 203
may transfer a clear frame buffer, while the external memory
device coupled to the memory controller 205 may store frame
buffers in encrypted form. Therefore, the clear frame buffer
sent by the LCD controller 203 is to be encrypted before being
sent to the memory controller 205.

10

15

20

25

30

35

40

45

50

55

60

12

If the system bus determines that the data does not need
additional processing, the system bus performs standard data
transfer operation (506). For example, in one implementa-
tion, the external memory device may store the frame buffer
in unencrypted form. The write memory command is for-
warded on the system bus with the extra address bit not set.
The memory controller 205 receives the write memory com-
mand since it is the destination indicated in the command, and
performs the data transfer operation.

On the other hand, if the system bus determines that the
data needs additional processing, the extra address bit is set in
the system bus (508). For example, a clear frame buffer has to
be encrypted before being stored in the external memory
device. The system bus 204 may determine that the data needs
additional processing based on the address of the master
module, or the address of the destination memory, or both, as
described previously. In one implementation, the extra
address bit may be set by the master module initiating the data
transfer, while in other implementations, the extra address bit
is set by the system bus.

The data processing module listens on the system bus
(510). For example, the slave interface of the data processing
module 208 listens on the system bus 228 to determine
whether a data transfer instruction is redirected to the data
processing module 208. The slave interface module deter-
mines whether the extra address bit is set for a data transfer
instruction on the system bus (512). If the extra address bit is
not set, then the transfer instruction is not redirected to the
data processing module, the data processing module 208
ignores the transfer and the slave interface listens on the
system bus for the next transfer instruction (510).

Ifthe extra address bit is set in the system bus, then the data
transfer instruction is redirected to the data processing mod-
ule. The slave interface of the data processing module accepts
the data transfer instruction and the associated data sent with
the write transfer upon determining that the extra address bit
is set, while all other slave modules ignore the transfer
instruction due to the extra address bit being set. The data
processing module stores the data to write in internal buffer
(514). For example, the slave interface of the data processing
module 208 accepts the write transfer from the LCD control-
ler 203 and stores the associated clear frame buffer in the
internal buffer (e.g., internal buffer 314) of the data process-
ing module 208.

The data processing module processes the data (516). For
example, the data processing module 208 (e.g., data process-
ing core 330) encrypts the clear frame buffer and puts the
encrypted frame buffer in the internal buffer (e.g., internal
buffer 324).

The data processing module performs a data transfer with
the extra address bit unset (518). For example, the master
interface of the data processing module 208 makes a write
command on the system bus 224 with the encrypted frame
buffer as data. Consequently, the destination receives the
processed data (520). For example, the slave peripheral (e.g.,
memory controller 205), obtains the encrypted frame buffer
from the master interface of the data processing module 208
connected to the system bus 224 and stores the encrypted
frame buffer in the external memory device coupled to the
memory controller 205. Thus, in one implementation, the
microcontroller architecture 200 can implement the process
500 to perform data processing for a write transfer instruction
using a data processing module with both master and slave
interfaces.

While this document contains many specific implementa-
tion details, these should not be construed as limitations on
the scope what may be claimed, but rather as descriptions of

US 9,317,462 B2

13

features that may be specific to particular embodiments. Cer-
tain features that are described in this specification in the
context of separate embodiments can also be implemented in
combination in a single embodiment. Conversely, various
features that are described in the context of a single embodi-
ment can also be implemented in multiple embodiments sepa-
rately or in any suitable sub combination. Moreover, although
features may be described above as acting in certain combi-
nations and even initially claimed as such, one or more fea-
tures from a claimed combination can, in some cases, be
excised from the combination, and the claimed combination
may be directed to a sub combination or variation of a sub
combination.

What is claimed is:

1. A device comprising:

a master module;

a peripheral module;

a data processing module; and

a system bus coupled to the master module, the peripheral

module and the data processing module, the system bus

configured to perform operations comprising:

receiving an instruction from the master module for a
transfer of data associated with the peripheral mod-
ule;

determining that the data to be transferred is to be pro-
cessed by the data processing module before being
received at its destination; and

based on a determination that the data is to be processed
by the data processing module, redirecting the trans-
fer to the data processing module.

2. The device of claim 1, further comprising additional
master modules and additional peripheral modules, wherein
the determination that the data is to be processed by the data
processing module comprises at least one of:

determining which master module initiated the transfer,

determining which peripheral module is associated with

the transfer, or

determining a range of memory addresses corresponding

to the data to be transferred.

3. The device of claim 1, wherein redirecting the transfer to
the data processing module comprises:

based on the determination that the data is to be processed

by the data processing module, setting an extended
address field in the system bus.
4. The device of claim 1, wherein redirecting the transfer to
the data processing module comprises:
determining whether an extended address field associated
with the system bus is set by the master module; and

based on a determination that the extended address field
associated with the system bus is set by the master mod-
ule, redirecting the transfer to the data processing mod-
ule.

5. The device of claim 1, wherein the master module
includes one of a microprocessor core, a direct memory
access (DMA) controller, or a liquid crystal display (LCD)
controller.

6. The device of claim 1, wherein the peripheral module
includes one of a memory controller, device memory, or an
interrupt controller.

7. The device of claim 1, wherein the data processing
module includes a master interface and a slave interface, and
wherein the data processing module is configured to perform
operations comprising:

detecting, on the system bus, an indication that the data to

be transferred is to be processed by the data processing
module;

10

15

20

30

35

40

45

50

55

60

o
o

14

based on the detection, performing the transfer of the data
to the data processing module;
processing the data; and
placing the processed data on the system bus.
8. The device of claim 7, wherein detecting the indication
comprises detecting that an extended address field is set in the
system bus.
9. The device claim 8, wherein the transfer is a read trans-
fer, and wherein the data processing module is configured to
perform operations comprising:
detecting the indication that the data to be transferred is to
be processed by the data processing module using the
slave interface;
based on the detection, performing the transfer of the data
to the data processing module using the master interface,
wherein performing the transfer of the data includes
clearing the extended address field in the system bus;
and
placing the processed data on the system bus using the
slave interface.
10. The device of claim 8, wherein the transfer is a write
transfer, and wherein the data processing module is config-
ured to perform operations comprising:
detecting the indication that the data to be transferred is to
be processed by the data processing module using the
slave interface;
based on the detection, performing the transfer of the data
to the data processing module using the slave interface;
and
writing the processed data to the peripheral module using
the master interface, wherein writing the processed data
to the peripheral module comprises clearing the
extended address field in the system bus.
11. A device comprising:
a master module;
a peripheral module;
a system bus that is configured to process an instruction
from the master module for transfer of data associated
with the peripheral module; and
a data processing module that is coupled to the system bus,
the data processing module configured to perform
operations comprising:
detecting, on the system bus, an indication that the data
to be transferred is to be processed by the data pro-
cessing module before being received at its destina-
tion;

based on the detection, performing the transfer of the
data to the data processing module;

processing the data; and

placing the processed data on the system bus.

12. The device of claim 11, wherein data processing mod-
ule includes a master interface and a slave interface, and
wherein detecting the indication comprises detecting that an
extended address field is set in the system bus.

13. The device of claim 11, wherein the master module
includes at least one of a microprocessor core, a direct
memory access (DMA) controller, or a liquid crystal display
(LCD) controller.

14. The device of claim 11, wherein the peripheral module
includes at least one of a memory controller, device memory,
or an interrupt controller.

15. The device of claim 12, wherein the transfer is a read
transfer, and wherein the data processing module is config-
ured to perform operations comprising:

detecting, using the slave interface, the indication that the
data to be transferred is to be processed by the data
processing module;

US 9,317,462 B2

15

performing the transfer of the data to the data processing
module using the master interface, wherein performing
the transfer of the data includes clearing the extended
address field in the system bus; and

placing the processed data on the system bus using the

slave interface.

16. The device of claim 12, wherein the transfer is a write
transfer, and wherein the data processing module is config-
ured to perform operations comprising:

detecting, using the slave interface, the indication that the

data to be transferred is to be processed by the data
processing module;

performing the transfer of the data to the data processing

module using the slave interface; and

writing the processed data to a peripheral module using the

master interface, wherein writing the processed data to
the peripheral module comprises clearing the extended
address field in the system bus.

17. The device of claim 12, wherein the data processing
module comprises a direct memory access (DMA) module
included in the master interface, the DM A module configured
to perform operations comprising:

performing the transfer of the data from a memory module

to the data processing module for a read transfer; and
writing the processed data from the data processing mod-
ule to a memory module for a write transfer.

18. The device of claim 12, wherein the system bus is
configured to set the extended address field based on a deter-
mination that the data to be transferred is to be processed by
the data processing module before being received at its des-
tination.

19. The device of claim 18, wherein the device includes
additional master modules and additional peripheral mod-
ules, and wherein the determination that the data to be trans-
ferred is to be processed by the data processing module com-
prises at least one of:

determining which master module initiated the transfer,

determining which peripheral module is associated with

the transfer, or

determining a range of memory addresses corresponding

to the data to be transferred.

10

20

30

35

40

16

20. A method comprising:

receiving, at a system bus, an instruction from a master
module for a transfer of data associated with a peripheral
module;

determining, by the system bus, that the data to be trans-

ferred is to be processed by the data processing module
before being received at its destination; and

based on the determination that the data is to be processed

by the data processing module, redirecting the transfer to
the data processing module.

21. The method of claim 20, wherein determining that the
data is to be processed by the data processing module com-
prises at least one of:

determining which master module initiated the transfer,

determining which peripheral module is associated with

the transfer, or

determining a range of memory addresses corresponding

to the data to be transferred.

22. The method of claim 20, wherein redirecting the trans-
fer to the data processing module comprises:

based on the determination that the data is to be processed

by the data processing module, setting, by the system
bus, an extended address field in the system bus.
23. The method of claim 20, wherein redirecting the trans-
fer to the data processing module comprises:
determining whether an extended address field associated
with the system bus is set by the master module; and

based on a determination that the extended address field
associated with the system bus is set by the master mod-
ule, redirecting the transfer to the data processing mod-
ule.

24. The method of claim 20, further comprising:

detecting, by the data processing module, an indication

associated with the system bus that the data to be trans-
ferred is to be processed by the data processing module;
based on the detection, transferring, by the data processing
module, the data to the data processing module;
processing, by the data processing module, the data; and
placing, by the data processing module, the processed data
on the system bus.

25. The method of claim 24, wherein detecting the indica-
tion comprises detecting that an extended address field is set
in the system bus.

UNITED STATES PATENT AND TRADEMARK OFFICE
CERTIFICATE OF CORRECTION

PATENT NO. 19,317,462 B2 Page 1 of 1
APPLICATION NO. : 14/659074

DATED - April 19, 2016

INVENTOR(S) : Guillaume Pean et al.

It is certified that error appears in the above-identified patent and that said Letters Patent is hereby corrected as shown below:

In the Claims
Column 14 Line 8 in Claim 9, after “device” insert --0f--.

Column 14 Line 51 in Claim 12, after “wherein” insert --the--.

Signed and Sealed this
Twenty-first Day of June, 2016

Dectatle X Loa

Michelle K. Lee
Director of the United States Patent and Trademark Office

